
Finding Secret RDP Registry Keys Using IDA Free

ANYONE CAN PERFORM SIMPLE REVERSE ENGINEERING TASKS

IDA is a state-of-the-art reverse engineering tool commonly used in the software industry to 
analyze closed-source binaries. While free or cheaper alternatives like Ghidra are gaining in 
popularity, they are no match for IDA’s decompiler in terms of accuracy and maturity. Luckily for 
us, IDA Free now includes an x64 decompiler, which makes reversing possible without assembly 
language skills.

The goal of this blog post is to show how anyone can perform simple reverse engineering tasks 
using nothing more than logical deduction and the right set of tools. Instead of focusing on 
the final result, the steps include detailed screenshots and comments to show the complete 
thought process.

https://hex-rays.com/
https://ghidra-sre.org/
https://hex-rays.com/ida-free/
https://hex-rays.com/blog/announcing-version-7-6-for-ida-freeware/


2Finding Secret RDP Registry Keys Using IDA Free

Prerequisites
 
 
Download and install IDA Free. Please note that this specific edition of IDA is not suitable for commercial use, but 
since this guide is meant as an introduction, it shouldn’t be an issue. While I have access to IDA Pro at work, all the 
screenshots were taken using IDA Free to avoid confusion.

A Windows machine with RDP enabled is recommended to follow all the steps, but it is possible to do some of 
the tasks from another platform if necessary. I have used a clean Windows Server 2019 virtual machine for this 
project.
 

Finding a Goal
 
 
This may sound obvious, but rather than poke around random binaries, it is a good thing to start with a goal in 
mind. In this article, our goal will be to identify secret registry keys affecting the RDP H.264 video encoder.

How you choose the goal doesn’t matter, but I picked this one because I am familiar with H.264 in RDP through 
my work in the FreeRDP project.

The Microsoft RDP server is handled by the Remote Desktop Services system service, which is called 
TermService and uses termsrv.dll as its entry point:

https://hex-rays.com/ida-free/
https://hex-rays.com/IDA-pro/
https://www.freerdp.com/
https://webdevolutions.blob.core.windows.net/cms/rdp_system_service_35d812a4c4.png


3Finding Secret RDP Registry Keys Using IDA Free

Getting Started
 
 
Create a new directory called «Reversing» in «My Documents» and copy «termsrv.dll» from «C:\Windows\System32» 
into it. Launch IDA and click New in the Quick Start dialog:

Browse to the «Reversing» directory, select «termsrv.dll» and then click Open:

In the Load a new file dialog, check «Load resources» and then click OK. This option is not mandatory, but 
resource segments can sometimes contain valuable information.

https://webdevolutions.blob.core.windows.net/cms/ida_quick_start_81f5a06ff2.png
https://webdevolutions.blob.core.windows.net/cms/ida_select_file_81b39be633.png


4Finding Secret RDP Registry Keys Using IDA Free

Confirm that you want to load the matching debug symbols by clicking Yes when prompted:

Once the main IDA interface appears, wait for the Output window at the bottom to say «the initial autoanalysis 
has been finished». This can take a few minutes and varies a lot depending on the size of the binaries.

https://webdevolutions.blob.core.windows.net/cms/ida_load_resources_cd126e72fe.png
https://webdevolutions.blob.core.windows.net/cms/ida_load_symbols_18868f55b9.png
https://webdevolutions.blob.core.windows.net/cms/ida_load_complete_cda9a8dee1.png


5Finding Secret RDP Registry Keys Using IDA Free

That’s it! You are now ready to begin investigating the contents of «termsrv.dll». Refer to this procedure to create 
IDA projects for new binaries in the future.
 

No Strings Attached
 
 
Strings is the most useful view in IDA, but it is unfortunately not present in the default configuration. On the View 
menu, navigate to Open subviews then select Strings:

The new Strings view will be added, and show textual strings found anywhere inside the binary. Right-click 
anywhere inside the view to open the contextual menu, then select Setup...:

https://webdevolutions.blob.core.windows.net/cms/ida_strings_window_e5c77c4699.png
https://webdevolutions.blob.core.windows.net/cms/ida_strings_setup_af1da691d9.png


6Finding Secret RDP Registry Keys Using IDA Free

Check Unicode C-style (16 bits) to enable Unicode UTF-16 literals that are frequently used on Windows. The 
minimal string length can be changed if desired (5 is the default). Click OK to apply the changes:

The Strings view now shows a lot more strings than before. It took me years before I realized that IDA didn’t look 
for UTF-16 strings by default, and it would have saved me a lot of time!

Press Alt+T, then type «H264» and press Enter to search for that specific substring in all of the strings in termsrv.
dll. The Output window at the bottom should say «String H264 not found».

What’s Your Name?

So «H264» as a string is not present in termsrv.dll, but maybe it can be found in function names or symbols? On 
the View menu, navigate to Open subviews then select Names:

https://webdevolutions.blob.core.windows.net/cms/ida_strings_unicode_5a23e6f999.png
https://webdevolutions.blob.core.windows.net/cms/ida_strings_complete_5b7b26c70c.png


7Finding Secret RDP Registry Keys Using IDA Free

The Names view functions in the same way as the Strings view. Press Alt+T, then type «H264» and press Enter 
to search for the keyword in all symbol names. Unfortunately, we still have no results for «H264», indicating that 
termsrv.dll may not be the right place to look.

Is this the end of the road? Not at all! Reversing is a lot like fishing, where it can take time to catch one fish but 
it’s exciting when it finally happens. Let’s try a different type of bait: Process Explorer from the Sysinternals Suite. 
Download and launch the tool on the RDP server, then look for a process called «svchost.exe» with the «rdpclip.
exe» and «rdpinput.exe» subprocesses:

https://webdevolutions.blob.core.windows.net/cms/ida_names_window_72895c78c1.png
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite
https://webdevolutions.blob.core.windows.net/cms/rdp_procexp_dlls_49008cbcd8.png


8Finding Secret RDP Registry Keys Using IDA Free

Windows system services all run within «service host» (svchost) processes, which makes it harder to tell them 
apart. The Process Explorer Command Line column is quite helpful, otherwise the Get-CimInstance PowerShell 
cmdlet can be used to find the process id for a given service name:

What matters is that we can see a list of DLLs loaded in the RDP server alongside termsrv.dll. Let’s expand our 
search area to include a few DLLs that begin with «rdp» and copy them into our «Reversing» project directory:

While it is possible to have multiple IDA instances open at the same time, I would not recommend it, as it is easy 
to get lost. On the File menu, select Close. In the Save database dialog, select Pack database (Store) and then 
click OK:

https://webdevolutions.blob.core.windows.net/cms/ida_add_more_files_fbf87956ec.png
https://webdevolutions.blob.core.windows.net/cms/ida_save_database_eec60c42f1.png


9Finding Secret RDP Registry Keys Using IDA Free

We now have new files to look at, which I have decided to investigate in the following order:

• rdpserverbase.dll

• rdpbase.dll

• rdpcorets.dll

• rdpcore.dll

• rdpnano.dll

For each of those files, I repeat the entire process:

• Create new IDA project

• Search for «H264» string

The string «H264» is found a few times in rdpserverbase.dll and rdpbase.dll, but it’s nothing significant. We finally 
hit the jackpot when searching for «H264» in rdpcorets.dll:

Not only do we see a lot of references to «H264», but some strings clearly hint at registry keys. We decide to focus 
on rdpcorets.dll and close all other IDA projects.

Searching for Functions

Now that we’ve found the strings, we can start searching for the functions that use them. Double-click on the 
string that appears to be a registry key path named «H264Encoding»:

https://webdevolutions.blob.core.windows.net/cms/ida_strings_jackpot_5e39f26c87.png


10Finding Secret RDP Registry Keys Using IDA Free

Software\Policies\Microsoft\Windows NT\Terminal Services\H264Encoding

The corresponding symbol is automatically selected and shown in the IDA View-A tab. A lot of times, strings 
do not have a proper name in the binary, so IDA generates a name for them. In this case, our string is called 
«aSoftwarePolici_0». Right-click on the symbol name, then select Jump to xref to operand...:

A list of functions using this specific string symbol appears. «SetH264EncodingParametersFromRegistry» looks 
like a good choice, so double-click on it:

The IDA view now presents the disassembled «SetH264EncodingParametersFromRegistry» function, with 
commented assembly instructions:

https://webdevolutions.blob.core.windows.net/cms/ida_xref_to_operand_d5db0b9d20.png
https://webdevolutions.blob.core.windows.net/cms/ida_xref_operand_list_9eaf3faf3a.png


11Finding Secret RDP Registry Keys Using IDA Free

While some advanced reverse engineers like this kind of view, it is quite difficult to read, especially without 
knowledge of assembly language. Press F5 to decompile the function into readable pseudocode. When IDA 
prompts for confirmation, click Yes to proceed:

The decompiled function is now shown in all of its glory. Please bear in mind that since a lot of information is lost 
at compile time, IDA can only reconstruct automatically certain things, and make an educated guess at the rest. 
This particular example is surprisingly well decompiled, but most functions will have a lot of inaccuracies in them.

https://webdevolutions.blob.core.windows.net/cms/ida_function_disassembled_5c377ad339.png
https://webdevolutions.blob.core.windows.net/cms/ida_decompiler_confirmation_edb4c90cd7.png
https://webdevolutions.blob.core.windows.net/cms/ida_decompiled_function_e3855464e5.png


12Finding Secret RDP Registry Keys Using IDA Free

Decompiling a function is exciting, but did we find the right one? «EnableQPSingleStep» and 
«VideoDetectorRectDisplayMode» are clearly registry keys, but they have names that don’t mean much except to 
someone well versed in H.264 codec internals. You can right-click on a function name or string constant in the 
pseudocode to find more cross-references to them. Let’s try it on the «RegOpenKeyExW» function and see where 
we land:

As expected, «RegOpenKeyExW» is used in a lot of other places that deal with registry keys, most of which are 
unrelated to H.264. However, we can spot a few of the functions from the previous list of cross-references on the 
«H264Encoding» string, so let’s move on to the «CreateOutputAvc» function:

Now that’s what I’m talking about! We can see the following registry key names that hint at H.264 recording 
capabilities in the RDP server:

https://webdevolutions.blob.core.windows.net/cms/ida_function_jump_to_xref_6e0a79f0d5.png
https://webdevolutions.blob.core.windows.net/cms/ida_function_xref_list_cf011fabf4.png


13Finding Secret RDP Registry Keys Using IDA Free

• RecordPath

• EnableRecord264

• EnableRecordYUV

Let’s try the «CreateCompressorOutputAvc» function to see if we can find more. It looks similar to the previous 
function, but with a few different registry keys:

• RecordPath

• EnableRecordRGB

• EnableRecordRdp264

https://webdevolutions.blob.core.windows.net/cms/rdp_registry_keys_h264_yuv_07225f3b00.png
https://webdevolutions.blob.core.windows.net/cms/rdp_registry_keys_h264_rgb_d10e446359.png


14Finding Secret RDP Registry Keys Using IDA Free

We are definitely onto something here, but we still haven’t seen a function that makes use of the values 
from the registry keys. Class constructions or initialization functions are usually great spots, so let’s try 
«OutputAvc::OutputAvc»:

The decompiled output from this OutputAvc constructor is more complex and contains more inaccuracies, but 
we can still see that it creates files with a specific name formatting. We could continue this for hours, so let’s stop 
and see if we can act on the information we already have.

Collecting Information

Once you get started with IDA, one issue most people face is finding a lot more information than they can process. 
You should see your primary goal as the «main quest» of the game, and everything else as «side quests». If you 
start taking too many tangents, you will lose track of your initial goal.

The best way to collect information is to use your favorite text editor to paste all sorts of clues as you find them. 
Do not try to organize them too much it’s not worth it. You often learn the true value of individual pieces of 
information once they have been linked to something else.

Let’s go back to our functions of interest for the RDP H.264 registry keys, and make a proper list. We have the 
names, but not the types, so let’s look at the API documentation for RegQueryValueExW.

The lpType output parameter contains the type as defined in Registry Value Types, but unfortunately we do not 
have the numerical values for each. This is a frequent problem that can be fixed by using a copy of the Windows 
SDK headers. In this case, only two types are used REG_SZ (1) and REG_DWORD (4).

https://webdevolutions.blob.core.windows.net/cms/rdp_registry_keys_h264_usage_8d399359cd.png
https://docs.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regqueryvalueexw
https://docs.microsoft.com/en-us/windows/win32/sysinfo/registry-value-types
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/


15Finding Secret RDP Registry Keys Using IDA Free

The only string type (REG_SZ) is «RecordPath» all other registry keys are numbers (REG_DWORD) with a value of 1 
or 0. Please note that since «RecordPath» is a «REG_SZ» type and not a «REG_EXPAND_SZ» type, it cannot contain 
environment variables like «%SystemRoot%». We end up with the following list of registry keys with comments:

HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows NT\Terminal Services\H264Encoding

• RecordPath: full path to an output directory for recording

• Enable264Log: enables H.264 logging, must be set to 1

• EnableRecordYUV: enables raw YUV capture dump (very large!)

• EnableRecordRGB: enables raw RGB capture dump (very large!)

• EnableRecord264: enables raw H.264 bitstream dump

• EnableRecordRdp264: enables raw RDP H.264 stream dump

Testing It Out

Now that we have collected valuable information, let’s try using the registry keys to confirm that they actually work. 
Open the registry editor (regedit.exe), then create the «H264Encoding» registry key. Create the «C:\Windows\
Temp\RdpRecording» directory, then set the «RecordPath» key value accordingly. Create and set all of the other 
registry key values to 1 to enable all types of recording.

https://webdevolutions.blob.core.windows.net/cms/rdp_registry_keys_h264_new_2a70449084.png


16Finding Secret RDP Registry Keys Using IDA Free

RDP H.264 registry keys are only going to be used if H.264 is used for the RDP connection, so let’s tweak the 
RDP server configuration. Open the group policy editor (gpedit.msc) then browse to the following section under 
Computer Configuration:

Computer Configuration > Administrative Templates > Windows Components > Remote Desktop 
Services > Remote Desktop Session Host > Remote Session Environment

Enable the following policies:

• Prioritize H.264/AVC 444 graphics mode for remote desktop connections

• Configure H.264/AVC hardware encoding for remote desktop connections

Enable and set the Limit maximum color depth policy to 32 bit as it can affect codec negotiation as well.

Reboot the RDP server to apply the changes, then connect with RDP, do a few things to create image updates, 
and then sign out. Reconnect with RDP and then open the «C:\Windows\Temp\RdpRecording» directory to see if 
it worked:

https://webdevolutions.blob.core.windows.net/cms/rdp_enable_h264_gpedit_defaaadcfa.png
https://webdevolutions.blob.core.windows.net/cms/rdp_recording_files_4c1a8b6f0f.png


17Finding Secret RDP Registry Keys Using IDA Free

Empty files are usually the ones currently used by the RDP server; they are flushed to the disk only when the 
session is terminated, which is why a full sign out is required. Since these are raw data dumps used for internal 
debugging, they require a bit of transformation.

The uncompressed YUV pixels can be played directly using VLC and the right command-line options:

Alternatively, the raw H.264 bitstream can be embedded into an .mp4 video file using ffmpeg:

The actual file names and parameters will vary, so adjust them accordingly. Here is what it should look like when 
it works:

https://www.videolan.org/
https://webdevolutions.blob.core.windows.net/cms/rdp_recording_sample_24ac1e0c38.gif


18Finding Secret RDP Registry Keys Using IDA Free

Just like most «secret» registry keys, they weren’t hidden, but they weren’t meant to be used or relied upon. There 
is also no guarantee that they will be supported in the future.

Closing Thoughts

Without access to the source code, one can still gain insight into closed-source binaries used on millions of devices. 
There is a certain adrenaline rush associated with finding ways to achieve useful things that are not normally 
supported. While advanced reverse engineering takes a lot more work, one has to start somewhere. If you are a 
beginner in reverse engineering, did you find this blog post useful? If so, what would you like to learn next?


