
USER-GENERATED FILE UPLOADS ARE 
ESSENTIAL FOR MANY APPLICATIONS 

AND BUSINESS SERVICES

User-generated file uploads are essential for many 
applications and business services. For example, file uploads 
are a fundamental function for healthcare portals, Content 
Management Systems (CMS), and messaging applications.
 
However, allowing users to upload files comes with its own 
set of risks. Attackers are constantly trying to breach systems 
and steal information by embedding malicious content. 
Fortunately, you can avoid this type of crisis with proper 
preventative techniques. This article covers automatic 
file upload risks and types, as well as eight tips to prevent 
attacks.

How to Prevent File Upload Vulnerabilities



2

File Upload Security Risks
 
Attackers can exploit non-secure file upload techniques to upload malicious content to systems. Here are 
the three most common risks of user-generated file uploads.
 
Unrestricted file types
 
Anyone who has access to your website can upload a malicious file to the server if you do not restrict 
the upload of certain file types, including Windows files like .exe, .pif, .bat. These file types are dangerous 
because they are capable of executing commands and running malicious codes.
 
Multipurpose Internet Mail Extensions (MIME) type validation
 
Attackers can easily bypass MIME type validation security to examine the content of a particular file. For 
example, MIME sniffing is a legitimate technique to determine the format of a file. However, attackers can 
leverage MIME sniffing to execute Cross Site Scripting (XSS) attacks.
 
Blacklisting file extensions
 
Blacklisting file extensions keeps track of potentially harmful extensions. When a user uploads a  
file, the system checks the file extension to make sure it is not on the blacklist. If it is, the file is rejected.  
Unfortunately, this method may not be able to list all harmful extensions. An attacker can use an extension 
that is not included on the list to deceive the security system.
 
 

Types of File Upload Attacks
 
There are 4 file upload vulnerability groups. When developing a system that accepts user-generated  
files, you should evaluate the risks related to each group. Also, you have to implement appropriate security 
checks to prevent attacks.
 
File size vulnerabilities
 
Unusually large files can lead to an overload or failure in an application. For instance, attackers can execute 
botnet or Denial of Service (DDoS) attacks to trigger simultaneous uploads of very large files. As a result, the 
system does not fulfill legitimate requests and eventually shuts down.
 
Malicious content
 
Uploaded file content can include exploits, malware and malicious scripts. An attacker can use malicious 

https://www.denimgroup.com/resources/blog/2019/05/mime-sniffing-in-browsers-and-the-security-implications/
https://securelist.com/ddos-report-q3-2019/94958/


3

content to manipulate the application behavior. For example, hackers can reveal a system access key by 
uploading specific malware.
 
File access vulnerabilities
 
Attackers can manipulate the access rules of files to penetrate vulnerable systems. For instance, hackers can 
get access to private user photos by misconfiguring AWS S3 configurations.
 
File metadata vulnerabilities
 
An incorrect file name or path can trick an application into copying the file to another location. This can 
result in file changes and lead to unexpected behavior. For instance, an attacker can overwrite important 
configuration files by using control characters in the file name. Another example is changing security settings 
to upload malicious files.
 
 

How to Prevent File Upload Vulnerabilities: 7 Best Practices
 
Follow these best practices to prevent the file upload attacks mentioned above:
 
1. File type verification
 
File types are usually defined by their file extensions. Each file type usually has several corresponding file 
extensions. The file extensions enable the operating system and users to easily identify the type of file.
 
Attackers can bypass security systems and spoof operating systems and users by changing file extensions. 
For example, hackers can rename a malicious .exe file into a legitimate-looking .docx file. To prevent this, you 
must verify the file type before allowing upload.
 
2. Restrict specific file extensions
 
A whitelist provides system access only to administrator-approved programs, IPs and email addresses. 
Creating a white list of allowed files enables you to avoid uploads of potentially malicious content to your 
site. The white list can include executables, scripts and any other file type.
 
3. Malware prevention
 
Websites that insert or parse data from uploaded files may be vulnerable to malware attacks. To prevent 
malware, you should scan all uploaded files with multiple anti-malware tools. Each tool uses different 
algorithms and specializes in different categories.
 

https://www.techradar.com/best/best-free-anti-malware-software


4

4. Remove embedded threats
 
Anti-malware tools don’t always detect embedded threats in PDFs, MS Office and image files. For  
example, attackers use digital watermarking techniques to embed malicious code inside an image or video 
file. Make sure to remove any possible embedded objects from your uploaded files.
 
5. User authentication
 
User authentication methods validate the identity of the person requesting private information. Implement 
robust user authentication protocols like Two-factor authentication (2FA).
 
Two-factor authentication is a two-step authentication process. The process combines a password and 
username with a physical or mobile token for extra security. The sequence of authentication factors makes 
it more difficult for a potential intruder to gain access.
 
6. Store files in an external directory
 
Upload files to external directories and store them outside the webroot. This technique prevents attackers 
from executing malicious files through a website URL.
 
7. Simple error messages
 
Error messages sometimes use server configuration settings or directory paths to give more information to 
the user. However, cybercriminals can use the information from error messages to exploit vulnerabilities in 
uploaded files. For this reason, you should make the error message as simple as possible.
 
 

Advanced Protection Techniques for Enterprise-Grade 
Applications
 
The tips above cover the fundamentals of secure file uploads. However, you must consider additional 
protection levels when developing applications that require robust security. Here are some  
enterprise-grade file upload security techniques you can use:

•	 Protect your files from Cross-site Scripting (XSS) attacks — Attackers use XSS attacks to inject malicious 
code into legitimate web applications or files.

•	 Avoid using the HTTP PUT Method — The PUT method is designed to manage file operations. Attackers 
can use this method to upload malicious resources like web shells to a server. Instead, select encoded 
methods like POST.



5

•	 Audit write access to important configuration files — Use “web.config” or .htaccess” to block access to 
the file uploading system. You can do this manually or via an automatic file uploads system.

•	 Restrict access to certain web services without validating client caches — This is done by disabling your 
browser caching for corssdomain.xml and clientaccesspolicy.xml.

 
 

Conclusion
 
Automatic file uploads help organizations keep up with the extensive amount of user-generated data on the 
web. However, developing a secure file upload system is challenging. You must invest in file upload security 
to prevent costly data breaches that can have a significant impact on your organization. You can use the 
best practices above to identify cost-effective ways to manage and evaluate automatic file upload security.

https://cloudinary.com/features/file_upload_storage

